Alle artikelen

Stop feeding ChatGPT your secret sauce: How to safely use AI in FoodTech

As a food scientist or ingredient researcher, you've likely heard about AI's potential to revolutionize product development. From analyzing consumer preferences to predicting ingredient interactions, AI can accelerate your R&D process and unlock insights that traditional methods might miss. But there are also risks. Specifically, the question that I often get is:

How can I use these AI tools safely in the context of secret company data?

At Wolk, we've helped numerous companies integrate AI into their R&D workflows. We've learned that the path to successful AI implementation isn't one-size-fits-all. Especially when dealing with proprietary recipes, consumer data, and regulatory requirements.

This guide breaks down three main ways to implement AI in your food R&D operations, helping you understand the benefits, costs, and security considerations of each approach.

Why AI security matters in FoodTech

Before exploring your options, it's crucial to understand why security matters in food AI applications. Your research involves:

  • Proprietary formulas that represent years of development investment

  • Consumer preference data that provides competitive advantage

  • Supplier information and ingredient sourcing details

  • Regulatory compliance data required for food safety

  • Market research insights that guide product strategy

A data breach or unauthorized access could expose trade secrets, compromise consumer privacy, or even impact food safety protocols. This is why choosing the right AI deployment strategy is about more than just functionality—it's about protecting your competitive advantage. Therefore I will describe 4 options to use AI in your organization.

Option 0
Shadow AI

Option 1
Business accounts

Option 2
Public cloud

Option 3
In-House AI infrastructure

AI quality

Good (free tier)

Excellent (latest models)

Excellent (latest models

Good (open source models)

Security

Very bad

Okay

Good

Excellent

Costs

-

€€

€€€

€€€€

An overview of 4 options to use AI in your organization.

Before exploring proper AI implementation strategies, we need to address what we see happening in most food companies today—and why it's creating serious risks for R&D teams.

The current reality

Here's the scenario we encounter repeatedly:

  • No clear AI strategy from management: Leadership hasn't provided guidance on AI use, leaving employees to figure it out themselves

  • Enthusiastic but unguided employees: Team members who use ChatGPT at home naturally want to apply it to work challenges

  • Ad-hoc decision making: Researchers make case-by-case judgments about what company data feels "safe" to share with AI tools

  • No oversight or controls: Management has no visibility into what information is being shared or how AI is being used

This is called 'Shadow AI'.

Why this creates serious risks

When your team members use personal AI accounts for work purposes, several problems emerge:

  • Proprietary recipe exposure: That "quick question" about ingredient substitutions might reveal your secret formulation

  • Consumer data leakage: Survey responses or focus group insights could end up in AI training data

  • Supplier information exposure: Discussions about sourcing or pricing could compromise vendor relationships

  • Regulatory compliance issues: Sharing consumer data without proper controls may violate privacy regulations

  • Competitive intelligence loss: Your research directions and priorities become visible to AI providers

Is this you?

If you're reading this as someone who has used ChatGPT or similar tools for work, you're not alone—and you're not necessarily doing anything wrong. Many professionals have found AI helpful for literature reviews, brainstorming, or data analysis. However, it's important to understand that:

  • Personal accounts offer no business protection: Your company has no control over data handling or security

  • Information may be retained and used: AI providers often use conversations to improve their systems

  • Third-party access is possible: Your discussions could potentially be accessed by others

  • Liability questions remain unclear: If something goes wrong, who is responsible?

The solution: moving beyond shadow AI

Rather than banning AI use (which rarely works), the solution is implementing a proper AI strategy that gives your team the tools they want while protecting your competitive assets. This means choosing one of the three strategic approaches outlined below.

Think of this like subscribing to a premium research database or specialized software tool. Large tech companies offer business-grade AI services like ChatGPT, AI Studio, and Claude designed for professional use.

What you get

These services provide:

  • Instant access to powerful AI capabilities without technical setup

  • User-friendly interfaces that work like advanced search engines

  • Pre-built tools for text analysis, data interpretation, and content generation

  • Professional support and documentation

  • Regular updates with the latest AI improvements

Use cases in Foodtech

  • Literature review acceleration: Quickly analyze thousands of research papers for ingredient trends

  • Consumer insight analysis: Process survey responses and social media data to identify flavor preferences

  • Regulatory compliance: Analyze labeling requirements across different markets

  • Competitive intelligence: Monitor patent filings and product launches

Costs: €€

  • Just some business accounts for your (R&D) team

Security Trade-offs

Good for your team:

  • Professional-grade security managed by specialists

  • Compliance with major data protection standards

  • No need for internal IT security expertise

  • Quick setup without infrastructure investment

Consider carefully:

  • Your data is processed on external servers

  • Limited control over where information is stored

  • Potential exposure if the service provider is breached

  • May not meet requirements for highly sensitive formulations

Best for Teams Who:

  • Want to start using AI quickly without technical complexity

  • Have standard confidentiality requirements

  • Need to demonstrate AI value before major investments

  • Lack dedicated IT support staff

This approach is like having your own private research facility in a shared building. You get dedicated space and control, but benefit from shared infrastructure and services. On most public clouds you can host the latest frontier models in a secure way. Alternatively, you can host an 'open source' model like Llama.

What You Get

  • Dedicated AI systems configured specifically for your needs

  • Custom security settings that meet your industry requirements

  • Scalable capacity that grows with your research demands

  • Integration capabilities with your existing research tools

  • Geographic control over where your data is processed

Real-World Applications for Food R&D

  • Recipe optimization: Generate variations based on nutritional or cost parameters

  • Custom ingredient databases: Build AI systems trained on your specific ingredient knowledge

  • Sensory analysis automation: Process consumer taste test data with models tuned to your products

  • Supply chain optimization: Analyze supplier data while maintaining vendor confidentiality

  • Nutritional modeling: Create predictive models for how ingredient changes affect nutrition profiles

  • Quality control analysis: Process production data to identify patterns affecting product consistency

Costs: €€€

Budget considerations

  • Dedicated cloud computing resources

  • Setup and maintenance

  • Professional services for initial configuration and training

Security Trade-offs

Good for your team:

  • Greater control over security configurations

  • Ability to meet specific industry compliance requirements

  • Dedicated resources not shared with competitors

  • Options for geographic data residency

Consider carefully:

  • Requires some technical expertise to manage effectively

  • More complex setup and maintenance

  • Higher costs than ready-to-use services

  • Responsibility for security configuration falls on your organization

Best for Teams Who:

  • Handle sensitive formulation data

  • Have some technical support available

  • Need custom AI capabilities for specific research areas

  • Want to scale AI usage significantly over time

This is like building your own private research laboratory. You have complete control and maximum security, but also full responsibility for everything. Besides that, you can only use open source models (or train one yourself).

What You Get

  • Complete control over every aspect of your AI system

  • Maximum security with data never leaving your facilities

  • Unlimited usage without per-query costs

  • Full customization for your specific research needs

  • Independence from external service providers

Real-World Applications for Food R&D

  • Proprietary recipe development: Train AI on your complete formulation database without external exposure

  • Confidential market research: Analyze consumer data with complete privacy assurance

  • Trade secret protection: Process competitive intelligence without risk of data exposure

  • Regulatory submission preparation: Handle sensitive regulatory data with complete control

  • Advanced ingredient research: Develop AI models for novel ingredient interactions

Costs: €€€€

Significant investment required:

  • Initial setup + maintenance: hardware and software

  • Specialized personnel

Security Trade-offs

Good for your team:

  • Complete data sovereignty and control

  • Meets the strictest confidentiality requirements

  • No risk of external data breaches

  • Custom security measures for your specific needs

Consider carefully:

  • Requires significant technical expertise and dedicated staff

  • High upfront and ongoing costs

  • Your team is responsible for all maintenance and updates

  • Limited scalability compared to cloud options

Best for Teams Who:

  • Work with highly sensitive or proprietary formulations

  • Have substantial R&D budgets and technical resources

  • Face strict regulatory or confidentiality requirements

  • Process large volumes of data regularly

Making the right choice for your R&D team

Start with your data sensitivity level

  • Public research and general market analysis: Ready-to-use AI services provide excellent value and capabilities.

  • Proprietary formulations and competitive research: Cloud-based private setups offer the right balance of security and capability.

  • Trade secrets and highly confidential data: In-house infrastructure may be necessary despite higher costs.

Consider your team's technical capabilities

  • Limited technical resources: Ready-to-use services minimize complexity and provide professional support.

  • Some technical expertise available: Cloud-based solutions offer good control with manageable complexity.

  • Dedicated technical team: In-house infrastructure enables maximum customization and control.

Evaluate your budget and timeline

  • Quick results needed: Ready-to-use services can be operational within days.

  • Moderate budget with growth plans: Cloud-based solutions provide scalability and professional capabilities.

  • Substantial long-term investment: In-house infrastructure offers maximum value for high-volume usage.

Evaluate your situation & start small!

AI can revolutionize food R&D by accelerating literature reviews, analyzing consumer preferences, optimizing formulations, and identifying market opportunities. The key is choosing an implementation approach that matches your team's needs, capabilities, and security requirements.

Start simple with ready-to-use services if you're new to AI or have standard confidentiality needs. Consider cloud-based private setups when you need more control and have some technical resources. Invest in in-house infrastructure only when data sensitivity and usage volume justify the significant investment.

Remember, these aren't permanent decisions. Many successful food companies start with one approach and evolve their strategy as their AI expertise and requirements grow.


Wolk is the data & AI partner in Foodtech. Contact me to discuss your specific research needs and develop an AI strategy that fits your team's goals and capabilities. Find me on LinkedIn, or send an email to jelle@wolk.work


Blijf op de hoogte!

Schrijf je in voor onze nieuwsbrief, de Wolkskrant, om de laatste tools, trends en tips van de industrie te ontvangen.

Subscribe